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Abstract. Multiparty session types are a type system that can ensure the safety
and liveness of distributed peers via the global specification of their interac-
tions. To construct a global specification from a set of distributed uncontrolled
behaviours, this paper explores the problem of fully characterising multiparty
session types in terms of communicating automata. We equip global and local
session types with labelled transition systems (LTSs) that faithfully represent
asynchronous communications through unbounded buffered channels. Using the
equivalence between the two LTSs, we identify a class of communicating au-
tomata that exactly correspond to the projected local types. We exhibit an algo-
rithm to synthesise a global type from a collection of communicating automata.
The key property of our findings is the notion of multiparty compatibility which
non-trivially extends the duality condition for binary session types.

1 Introduction

Over the last decade, session types [12l[18] have been studied as data types or functional
types for communications and distributed systems. A recent discovery by [4,20], which
establishes a Curry-Howard isomorphism between binary session types and linear log-
ics, confirms that session types and the notion of duality between type constructs have
canonical meanings. Multiparty session types [2,/13] were proposed as a major general-
isation of binary session types. They can enforce communication safety and deadlock-
freedom for more than two peers thanks to a choreographic specification (called global
type) of the interaction. Global types are projected to end-point types (local types),
against which processes can be statically type-checked and verified to behave correctly.

The motivation of this paper comes from our practical experiences that, in many
situations, even where we start from the end-point projections of a choreography, we
need to reconstruct a global type from distributed specifications. End-point specifica-
tions are usually available, either through inference from the control flow, or through
existing service interfaces, and always in forms akin to individual communicating finite
state machines. If one knows the precise conditions under which a global type can be
constructed (i.e. the conditions of synthesis), not only the global safety property which
multiparty session types ensure is guaranteed, but also the generated global type can
be used as a refinement and be integrated within the distributed system development
life-cycle (see [17]). This paper attempts to give the synthesis condition as a sound
and complete characterisation of multiparty session types with respect to Communi-
cating Finite State Machines (CFSMs) [3]]. CFSMs have been a well-studied formal-
ism for analysing distributed safety properties and are widely present in industry tools.
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They can been seen as generalised end-point specifications, therefore an excellent target
for a common comparison ground and for synthesis. As explained below, to identify a
complete set of CFSMs for synthesis, we first need to answer a question — what is the
canonical duality notion in multiparty session types?

Characterisation of Binary Session Types as Communicating Automata. The sub-
class which fully characterises binary session types was actually proposed by Gouda,
Manning and Yu in 1984 [[11] in a pure communicating automata context. Consider a
simple business protocol between a Buyer and a Seller from the Buyer’s viewpoint:
Buyer sends the title of a book, Seller answers with a quote. If Buyer is satisfied by the
quote, then he sends his address and Seller sends back the delivery date; otherwise it
retries the same conversation. This can be described by the following session type:

ut.title; ?2quote; !{ ok :!addrs; ?date;end, retry:t } (1.1)

where the operator !title denotes an output of the title, whereas ?quote denotes an in-
put of a quote. The output choice features the two options ok and retry and ; denotes
sequencing. end represents the termination of the session, and (it is recursion.

The simplicity and tractability of binary sessions come from the notion of duality in
interactions [[10]]. The interaction pattern of the Seller is fully given as the dual of the
type in (L) (exchanging input ! and output ? in the original type). When composing
two parties, we only have to check they have mutually dual types, and the resulting
communication is guaranteed to be deadlock-free. Essentially the same characterisation
is given in communicating automata. Buyer and Seller’s session types are represented

by the following two machines.
Tretry Iretry

- Qm ?ok>Q! addr>sO ?datz© - Om !0k>©?add?sQ !dat?©

We can observe that these CFSMs satisfy three conditions. First, the communications
are deterministic: messages that are part of the same choice, ok and retry here, are dis-
tinct. Secondly, there is no mixed state (each state has either only sending actions or
only receiving actions). Third, these two machines have compatible traces (i.e. dual):
the Seller machine can be defined by exchanging sending to receiving actions and
vice versa. Breaking one of these conditions allows deadlock situations and breaking
one of the first two conditions makes the compatibility checking undecidable [[11L[19].

Multiparty Compatibility. This notion of duality is , _, O AB ’q“iLOAC !ﬁni8h>©
no longer effective in multiparty communications, B!acté) ACIcommit
where the whole conversation cannot be reconstructed
from only a single behaviour. To bypass the gap be- AB%aui

. . ‘quit BClsave
tween binary and multiparty, we take the synthesis B — O >O >©
approach, that is to find conditions which allow a  AB?act )BC!sig
global choreography to be built from the local ma-
chine behaviour. Instead of directly trying to decide cs O BC?sangAC?ﬁnis};©
whether the communications of a system will satisfy i
safety (which is undecidable in the general case), in- BC?Slgé)AC?wmmit
ferring a global type guarantees the safety as a direct Commit
consequence.
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We give a simple example above to illustrate the problem. The Commit protocol in-
volves three machines: Alice A, Bob B and Carol C. A orders B to act or quit. If act is
sent, B sends a signal to C, and A sends a commitment to C and continues. Otherwise B
informs C to save the data and A gives the final notification to C to terminate the protocol.

This paper presents a decidable notion of multiparty compatibility as a generalisa-
tion of duality of binary sessions, which in turns characterises a synthesis condition.
The idea is to check the duality between each automaton and the rest, up to the inter-
nal communications (1-bounded executions in the terminology of CFSMs, see § 2) that
the other machines will independently perform. For example, in the Commit example,
to check the compatibility of trace AB!quit AC!finish in A, we observe the dual trace
AB?quit- ACinish from B and C executing the internal communications between B and
C such that BC!save - BC?save. If this extended duality is valid for all the machines from
any 1-bounded reachable state, then they satisfy multiparty compatibility and can build
a well-formed global choreography.

Contributions and Outline. Section [3] defines new labelled transition systems for
global and local types that represent the abstract observable behaviour of typed pro-
cesses. We prove that a global type behaves exactly as its projected local types, and
the same result between a single local type and its CFSMs interpretation. These corre-
spondences are the key to prove the main theorems. Section [ defines multiparty com-
patibility, studies its safety and liveness properties, gives an algorithm for the synthesis
of global types from CFSMs, and proves the soundness and completeness results be-
tween global types and CFSMs. Section [3] discusses related work and concludes. The
full proofs and applications of this work can be found in [17].

2 Communicating Finite State Machines

This section starts from some preliminary notations (following [6]). € is the empty
word. A is a finite alphabet and A* is the set of all finite words over A. |x| is the length
of a word x and x.y or xy the concatenation of two words x and y. Let P be a set of
participants fixed throughout the paper: PC {A,B,C,...,p,q,... }-

Definition 2.1 (CFSM). A communicating finite state machine is a finite transition
system given by a 5-tuple M = (Q,C, qo, A, §) where (1) Q is a finite set of states; (2)
C={pq P | p#q} is a set of channels; (3) go € Q is an initial state; (4) A is a finite
alphabet of messages, and (5) 6 C O x (Cx{!,?} x A) x Qs a finite set of transitions.

In transitions, pqla denotes the sending action of a from process p to process q, and
pq?a denotes the receiving action of a from p by q. £, ¢’ range over actions and we define
the subject of an action ¢ as the principal in charge of it: subj(pqla) = subj(qp?a) = p.

A state g € Q whose outgoing transitions are all labelled with sending (resp. receiv-
ing) actions is called a sending (resp. receiving) state. A state ¢ € Q which does not
have any outgoing transition is called final. If g has both sending and receiving outgo-
ing transitions, g is called mixed. We say q is directed if it contains only sending (resp.
receiving) actions to (resp. from) the same (identical) participant. A path in M is a finite
sequence of qo,...,g, (n > 1) such that (g;,¢,q;+1) € 6 (0 <i<n—1), and we write



Multiparty Compatibility in Communicating Automata 177

g4 if (q,0,q') € 8. M is connected if for every state g # qo, there is a path from g
to g. Hereafter we assume each CFSM is connected.
ACFSM M = (Q,C,qo,A,d) is deterministic if for all states ¢ € Q and all actions ¢,

(4,4,4),(q,¢,q") € 8 imply ¢’ = ¢"[l

Definition 2.2 (CS). A (communicating) system S is a tuple S = (M;),cp of CFSMs
such that My, = (Qp,C,qop, A, &).

For M, = (Qp,C,q0p, A, 8;), we define a configuration of S = (Mp),cp to be a tuple
s = (g:w) where § = (gp)pep With gp € Qp and where W = (Wpq)p£qep With wpq € A*.
The element g is called a control state and g € Qy, is the local state of machine M.

Definition 2.3 (reachable state). Let S be a communicating system. A configuration
s' = (g';W) is reachable from another configuration s = (g, w) by the firing of the
transition t, written s — s’ or s, if there exists a € A such that either: (1) t =
(9p,pala,qp) € & and () q]’p, = gy for all p’ # p; and (b) wpy = wpq.a and w;,q/ = Wyq
for all p'q’ # pq; or (2) t = (qq,Pq%a, qy) € Oq and (a) q;, = gy forall p’ # g; and (b)
Wpq = @.Wpq and w;/q, = wyy forall p'q’ # pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content
a from a channel pq. The reflexive and transitive closure of — is —*. For a transition
t=(s,¢,5"), we refer to £ by act(t). We write s; L5, 1 for s; 2555 - - - 25,41 and use
¢ to denote 71 - - - 1,,. We extend act to these sequences: act(t| - - -t,) = act(ty) - - act(ty).

The initial configuration of a system is so = (go: €) with go = (qop)perp- A final con-
figuration of the system is s = (¢; €) with all g, € g final. A configuration s is reachable
if so —* s and we define the reachable set of S as RS(S) = {s | so —* s}. We define the
traces of a system S to be Tr(S) = {act(¢@) | Is € RS(S),s0-Ls}.

We now define several properties about communicating systems and their configura-
tions. These properties will be used in § Ml to characterise the systems that correspond to
multiparty session types. Let S be a communicating system, ¢ one of its transitions and
s = (g, w) one of its configurations. The following definitions of configuration proper-
ties follow [6, Definition 12].

1. sis stable if all its buffers are empty, i.e., W = €.

2. sis a deadlock configuration if s is not final, and w = € and each g, is a receiving
state, i.e. all machines are blocked, waiting for messages.

3. sis an orphan message configuration if all g, € g are final but w # 0, i.e. there is at
least an orphan message in a buffer.

4. s is an unspecified reception configuration if there exists q € P such that g4 is a
receiving state and (¢q,pq?a,q,) € 6 implies that [wye| > 0 and wpq & @A™, i.e qq
is prevented from receiving any message from buffer pq.

A sequence of transitions is said to be k-bounded if no channel of any intermediate
configuration s; contains more than k messages. We define the k-reachability set of
S to be the largest subset RSy (S) of RS(S) within which each configuration s can be

I “Deterministic” often means the same channel should carry a unique value, i.e. if (g,cla,q') €
8 and (q,cld’,q") € 6 then a = d' and ¢’ = ¢"'. Here we follow a different definition [[6] in
order to represent branching type constructs.
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reached by a k-bounded execution from so. Note that, given a communicating system
S, for every integer k, the set RS, (S) is finite and computable. We say that a trace @ is
n-bound, written bound(®) = n, if the number of send actions in ¢ never exceeds the
number of receive actions by n. We then define the equivalences: (1) S S is Vo, ¢ €
Tr(S) = @ € Tr(S); and (2) S =, S is Vo, bound(@) <n= (@ € Tr(S) < @ € Tr(5)).

The following key properties will be examined throughout the paper as properties
that multiparty session type can enforce. They are undecidable in general CFSMs.

Definition 2.4 (safety and liveness). (1) A communicating system S is deadlock-free
(resp. orphan message-free, reception error-free) if for all s € RS(S), s is not a deadlock
(resp. orphan message, unspecified reception) configuration. (2) S satisfies the liveness
property if for all s € RS(S), there exists s —* 5" such that ' is final.

3 Global and Local Types: The LTSs and Translations

This section presents multiparty session types, our main object of study. For the syntax
of types, we follow [2] which is the most widely used syntax in the literature. We intro-
duce two labelled transition systems, for local types and for global types, and show the
equivalence between local types and communicating automata.

Syntax. A global type, written G, G, .., describes the whole conversation scenario of a
multiparty session as a type signature, and a local type, written by T, T’ , .., type-abstract
sessions from each end-point’s view. p,q,--- € P denote participants (see § [2] for con-
ventions). The syntax of types is given as:

G 1= p— p/Z {aj.Gj}jej | ut.G | t | end

T == p?{a,-.T,-},-E[ | p!{ai.Ti},’e[ | ut.T | t | end
a; € A corresponds to the usual message label in session type theory. We omit the men-
tion of the carried types from the syntax in this paper, as we are not directly concerned
by typing processes. Global branching type p — p’: {a;.G |} jc; states that participant
p can send a message with one of the g; labels to participant p’ and that interactions de-
scribed in G follow. We require p # p’ to prevent self-sent messages and a; # ay for all
i # k € J. Recursive type ut.G is for recursive protocols, assuming that type variables
(t,t',...) are guarded in the standard way, i.e. they only occur under branchings. Type
end represents session termination (often omitted). p € G means that p appears in G.

Concerning local types, the branching type p?{a;.T;}ici specifies the reception of a

message from p with a label among the a;. The selection type p!{a;.T; }ics is its dual.
The remaining type constructors are the same as global types. When branching is a
singleton, we write p — p’ : a.G’ for global, and p!a.T or p?a.T for local.

Projection. The relation between global and local types is formalised by projection.
Instead of the restricted original projection [2], we use the extension with the merging
operator < from [[7]]: it allows each branch of the global type to actually contain different
interaction patterns. The projection of G onto p (written G | p) is defined as:

p{a;.Gjla}jes q=p

p—p:1{a;.Gj}jes 1a={pNa;.Gjlq}jes q=p (ut.G) TP={
UiesGjlq otherwise

tlp=t end [p=end

ut.Glp Glp#t
end otherwise
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The mergeability relation < is the smallest congruence relation over local types such
hat:
that Vie (KNJ).TsT ke (K\J),Yje (I\K).a#a;

pHa.Tibrek X pNHaj. T} jes

When T < T; holds, we define the operation L! as a partial commutative operator over
two types such that T U T = T for all types and that:

pHax Titkex UpNa;.Tj}jes = P?({an- (T UTY) rekns Ular-Tibkexs U{a;- T} jenk)
and homomorphic for other types (i.e. €'[T1| U € [Tz] = €'[T1 U Tz] where € is a context
for local types). We say that G is well-formed if for all p € P, G | p is defined.

Example 3.1 (Commit). The global type for the commit protocol in § [Ilis:
ut.A — B:{act.B — C:{sig.A — C:commit.t }, quit.B — C:{save.A — C:finish.end}}
Then C’s local type is: ut.B?{sig.A?{commit.t}, save.A?{finish.end}}.

We now present labelled transition relations (LTS) for global and local types and their
sound and complete correspondence.

LTS over Global Types. We first designate the observables (£, ¢, ...). We choose here
to follow the definition of actions for CFSMs where a label ¢ denotes the sending or the
reception of a message of label a from p to p’: ¢ ::= pp’la | pp’2a

In order to define an LTS for global types, we need to represent intermediate states
in the execution. For this reason, we introduce in the grammar of G the construct p ~~
p’: j {ai.Gi}ics to represent the fact that a 7 has been sent but not yet received.

Definition 3.1 (LTS over global types.). The relation G % G'is defined as (subj(£) is
defined in §2):
'la; . .
[GR1] p—p':{ai.Gi}icr LLEEN p~p:j{ai.Gilicr (€I

/ ! /
. la; Glut.G/t] = G
[GR2} P~ pl: J {a,-,G,-},-GI ‘——>pp ! Gj [GR:ﬂ [u /[] ,
ut.G - G
G5 G, qdsubj(t) Viel\j,Gi=G

. ¢ .
viel G;—G; R bj(¢
GrRay " i — G p.agsubj(l) GRS] [ ,
p~q: j{ai.Gitier = p~ q: j{ai.Gilicr

‘
p— q: {a;.Gi}iecr = p — q: {ai.Gi}ier

[GR1] represents the emission of a message while [GR2] describes the reception of
a message. [GR3] governs recursive types. [GR4,5] define the asynchronous seman-
tics of global types, where the syntactic order of messages is enforced only for the
participants that are involved. For example, when the participants of two consecutive
communications are disjoint, as in: Gy = A — B:a.C — D: b.end, we can observe the
emission (and possibly the reception) of b before the interactions of a (by [GR4]).

A more interesting example is: G, = A — B:a.A — C: b.end. We write ¢ = ABla,
Uy =AB?a, {3 = AC!b and {4 = AC?b. The LTS allows the following three sequences:

GzﬂﬁlAsza.AeC:b.end £—2>A—>C:b.end E—“>ch:b.end£—4>end

o~

Gy U A B:ah—C:bend 25 A B ah~C:bend 2 A~ C:bend 2 end

Gzﬁ% AwB:a,AHC:b.endé—%AwB:a,AwC:b.endﬁ@AwB:a.end£—2> en

Q
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The last sequence is the most interesting: the sender A has to follow the syntactic order
but the receiver C can get the message b before B receives a. The respect of these con-
straints is enforced by the conditions p, q ¢ subj(¢) and q & subj(¢) in rules [GR4,5].

LTS over Local Types. We define the LTS over local types. This is done in two steps,
following the model of CFSMs, where the semantics is given first for individual au-
tomata and then extended to communicating systems. We use the same labels (£, 7, ...)
as the ones for CFSMs.

Definition 3.2 (LTS over local types). The relation T’ N , for the local type of role
P, is defined as:

Tlut.T/t) 5 1’

la; qp’a;
[LR1] qa; Tikies 255 T [LR2) q¥{a;.Tikies —> T;  [LR3)] i
utT =T

The semantics of a local type follows the intuition that every action of the local type
should obey the syntactic order. We define the LTS for collections of local types.

Definition 3.3 (LTS over collections of local types). A configuration s = (7;w) of
a system of local types {7}, },cp is a pair with T = (T, )pep and W = (Wpq)p-Lqep With
Wwpq € A*. We then define the transition system for configurations. For a configuration

ST = (T";v‘v'), the visible transitions of sr EN sh= (f’;v?z”) are defined as: (1) 7 M Tp’
and (a) Tr:/ = Ty for all p’ # p; and (b) wpq = wpq @ and w;/q/ = wyy forall p'q’ # pq;

or (2) Ty pae, T, and (a) Tr:/ = Ty forall p’ # q; and (b) wpq = a-w},, and w;,q/ =Wy

P'd
for all p'q’ # pq.

The semantics of local types is therefore defined over configurations, following the
definition of the semantics of CFSMs. wyq represents the FIFO queue at channel pq.
We write 7r(G) to denote the set of the visible traces that can be obtained by reducing
G. Similarly for Tr(T) and Tr(S). We extend the trace equivalences ~ and ==, in § 2lto
global types and configurations of local types.

We now state the soundness and completeness of projection w.r.t. the LTSs.

Theorem 3.1 (soundness and completeness)ﬂ Let G be a global type with partici-
pants P and let T = {G | p}pcp be the local types projected from G. Then G ~ (T ;).

Local types and CFSMs Next we show how to algorithmically go from local types
to CFSMs and back while preserving the trace semantics. We start by translating local
types into CFSMs.

Definition 3.4 (translation from local types to CFSMs). Write T’ € T if T’ occurs in
T . Let Tj be the local type of participant p projected from G. The automaton correspond-
ing to Ty is A(Tp) = (Q,C,q0,A,8) where: (1) Q={T" |T' € Ty, T' #t,T' # ut.T};
(2) go = T§ with Ty = ut.Ty and Tj € Q; (3) C = {pq | p,q € G}; (4) A is the set of
{a € G}; and (5) & is defined as:

2 The local type abstracts the behaviour of multiparty typed processes as proved in the subject
reduction theorem in [13]]. Hence this theorem implies that processes typed by global type G
by the typing system in [2}[13]] follow the LTS of G.
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,(pp'la)), Tj) €6 Tj#t
,(pp"aj),T')ES Ti=t, wtt.7' €T, T' €Q
)ES Tj#t
pp?a,) Thed Tj=t, uttT €Ty, T' €Q

If T =p''{a;.T;} jes € O, then {E;

T
If T =p'a;.T}jes € Q, then {ET’E

The definition says that the set of states Q are the suboccurrences of branching or se-
lection or end in the local type; the initial state g is the occurrence of (the recursion
body of) Tp; the channels and alphabets correspond to those in 7p; and the transition is
defined from the state 7 to its body 7; with the action pp'!a; for the output and pp'?a;
for the input. If 7} is a recursive type variable t, it points the state of the body of the
corresponding recursive type. As an example, see C’s local type in Example[3.1]and its
corresponding automaton in § [11

Proposition 3.1 (local types to CFSMs). Assume Ty, is a local type. Then A(T,) is
deterministic, directed and has no mixed states.

We say that a CFSM is basic if it is deterministic, directed and has no mixed states. Any
basic CFSM can be translated into a local type.

Definition 3.5 (translation from a basic CFSM to a local type). From a basic M, =
(0,C,q0,A, ), we define the translation T(Mp) such that T(My) = T¢(qo) where T;(q)
is defined as:

(1) T4(q) = ptg.p'a;73,(q))} jes if (q.p0'1a),q)) € 8

(2) T4(q) = utyp'Haj. qq(q/)}/ef if (4.p'p%aj,q;) € 8

(3) Tz(q) = ‘J’E( ) =endif g is final; (4) T2 (q) = tg, if (¢,4,qx) € 6 and g € g; and
(5) T5(q) = T4(q) otherwise.

Finally, we replace ut.7 by T if tisnotin 7.

In T3, G records visited states; (1,2) translate the receiving and sending states to branch-

ing and selection types, respectively; (3) translates the final state to end; and (4) is the

case of a recursion: since g; was visited, ¢ is dropped and replaced by the type variable.
The following proposition states that these translations preserve the semantics.

Proposition 3.2 (translations between CFSMs and local types). If a CFSM M is
basic, then M =~ T(M). If T is a local type, then T =~ A(T).

4 Completeness and Synthesis

This section studies the synthesis and sound and complete characterisation of multi-
party session types as communicating automata. A first idea would be to restrict basic
CFSMs to the natural generalisation of half-duplex systems [6, § 4.1.1], in which each
pair of machines linked by two channels, one in each direction, communicates in a
half-duplex way. In this class, the safety properties of Definition[2.4] are however unde-
cidable [6, Theorem 36]. We therefore need a stronger (and decidable) property to force
basic CFSMs to behave as if they were the result of a projection from global types.
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Multiparty compatibility In the two machines case, there exists a sound and com-
plete condition called compatible [11]]. Let us define the isomorphism @ : (C x {!,?} x
A)* — (Cx{!,7} x A)* such that @(j?a) = jla, @®(jla) = jla, D(e) =€, D(t; - -1y)
=®(t)--- D(t,). P exchanges a sending action with the corresponding receiving one
and vice versa. The compatibility of two machines can be immediately defined as
Tr(M,) = @(Tr(M,)) (i.e. the traces of M; are exactly the set of dual traces of M).
The idea of the extension to the multiparty case comes from the observation that from
the viewpoint of the participant p, the rest of all the machines (M), should behave
as if they were one CFSM which offers compatible traces @(7r(Mp)), up to internal
synchronisations (i.e. 1-bounded executions). Below we define a way to group CFSMs.

Definition 4.1 (Definition 37, [6]). Let M; = (Q;,C;,qoi, Ai, 6;). The associated CFSM
of a system S = (My,..,M,) is M = (Q,C,qo,%,8) such that: 0 = Q1 X Oy X -+ X Qp,
qo = (qot, - --,qon) and & is the smallest relation for which: if (g;,¢,q}) € & (1 <i < n),
then ((q1,--,Gis-sqn), 4, (q1, -1}y - qn)) € 0.

We now define a notion of compatibility extended to more than two CFSMs. We say that
¢ is an alternation if ¢ is an alternation of sending and corresponding receive actions
(i.e. the action pqla is immediately followed by pq?a).

Definition 4.2 (multiparty compatible system). A system S = (M,..,M,) (n > 2) is
multiparty compatible if for any 1-bounded reachable stable state s € RS;(S), for any
sending action ¢ and for at least one receiving action ¢ from s in M;, there exists a se-
quence of transitions ¢ ¢ from s in a CFSM correspondingto S~/ = (M,...,M;_1,M; 1,

.,M,) where ¢ is either empty or an alternation and ¢ = ®(act(r)) and i & act(Q)
(i.e. @ does not contain actions to or from channel i).

The above definition states that for each M;, the rest of machines S~ can produce the
compatible (dual) actions by executing alternations in S~/. From M;, these intermediate
alternations can be seen as non-observable internal actions.

Example 4.1 (multiparty compatibility). As an example, we can test the multiparty
compatibility property on the commit example in § [l We only detail here how to check
the compatibility from the point of view of A. To check the compatibility for the ac-
tions act(t) -t;) = AB!quit- AC!finish, the only possible action is @ (act(t;)) = AB?quit
from B, then a 1-bounded excecution is BC!save - BC?save, and @ (act(t;)) = AC?finish
from C. To check the compatibility for the actions act(3 - t4) = ABlact - AC!commit,
@(act(t3)) = AB?act from B, the 1-bound execution is BC!sig- BC?sig, and @ (act(t4)) =
AC?commit from C.

Remark 4.1. In Definition[£.2] we check the compatibility from any 1-bounded reach-
able stable state in the case one branch is selected by different senders. Consider the
following machines:

-OMOMEQ 3200 <O KOO0
BAI@ Ar’g@ BA‘b@ CA'dCCS BA?b CA%
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In A, B and C, each action in each machine has its dual but they do not satisfy multiparty
compatibility. For example, if BA!a- BA?a is executed, CA!d does not have a dual action
(hence they do not satisfy the safety properties). On the other hand, the machines A’, B
and C satisfy the multiparty compatibility.

Theorem 4.1. Assume S = (M,)pcp is basic and multiparty compatible. Then S satisfies
the three safety properties in Definition2.4) Further, if there exists at least one My which
includes a final state, then S satisfies the liveness property.

Proposition 4.1. If all the CFSMs My, (p € P) are basic, there is an algorithm to check
whether (Mp)ycp is multiparty compatible.

The proof of Theorem [.1]is non-trivial, using a detailed analysis of causal relations.
The proof of Proposition[f.1lcomes from the finiteness of RS (S). See [17] for details.

Synthesis. Below we state the lemma which will be crucial for the proof of synthesis
and completeness. The lemma comes from the intuition that the transitions of multiparty
compatible systems are always permutations of one-bounded executions as it is the case
in multiparty session types. See [17] for the proof.

Lemma 4.1 (1-buffer equivalence). Suppose S| and S, are two basic and multiparty
compatible communicating systems such that Sy =1 Sy, then §1 = S5.

Theorem 4.2 (synthesis). Suppose S is a basic system and multiparty compatible. Then
there is an algorithm which successfully builds well-formed G such that S ~ G if such
G exists, and otherwise terminates.

Proof. We assume S = (M, ),cp. The algorithm starts from the initial states of all ma-
chines (¢P'o, ...,qP"o). We take a pair of the initial states which is a sending state gf, and
a receiving state gj from p to q. We note that by directness, if there are more than two
pairs, the participants in two pairs are disjoint, and by [G4] in Definition[3.1] the order
does not matter. We apply the algorithm with the invariant that all buffers are empty and
that we repeatedly pick up one pair such that g, (sending state) and ¢4 (receiving state).
We define G(q1, ...,qn) Where (gp,qq € {q1,...,qn}) as follows:

- if (q1,...,qn) has already been examined and if all participants have been involved
since then (or the ones that have not are in their final state), we set G(g1,...,g,) to
be tg, .. 4.- Otherwise, we select a pair sender/receiver from two participants that
have not been involved (and are not final) and go to the next step;

— otherwise, in gp, from machine p, we know that all the transitions are sending ac-
tions towards p’ (by directedness), i.e. of the form (¢p,pqla;,¢;i) € &, fori € I.

e we check that machine q is in a receiving state gq such that (¢q,pq%a;,4};) € 8y
with jeJand 7 C J.

o we set Uty .q,-P — q: {ai.G(q1,....qp < Gis--,qq < G} -1 qn) Fier (We Te-
place ¢, and g4 by ¢; and ¢/, respectively) and continue by recursive calls.

e if all sending states in gy, ...,q, become final, then we set G(q1,...,g,) = end.

— we erase unnecessary ut ift ¢ G.



184 P.-M. Deniélou and N. Yoshida

Since the algorithm only explores 1-bounded executions, the reconstructed G satisfies
G ~ S. By Theorem[3.1l we know that G ~ ({G | p}pep; €). Hence, by Proposition[3.2]
we have G ~ §’ where §' is the communicating system translated from the projected
local types {G [ p}pep of G. By Lemmal.1l S ~ S’ and therefore S ~ G. O

The algorithm can generate the global type in Example 3.1 from CFSMs in § [Iand the
global type B— A{a:C— A:{c:end,d:end},b:C— A:{c:end,d:end}} from &',
B and C in Remark 4] Note that B— A{a:C— A: {c:end},b:C— A:{d:end}}
generated by A, B and C in Remark [4.1]is not projectable, hence not well-formed.

By Theorems[3.1land .1l and Proposition[3.2] we can now conclude:

Theorem 4.3 (soundness and completeness). Suppose S is basic and multiparty com-
patible. Then there exists G such that S = G. Conversely, if G is well-formed, then there
exists a basic and multiparty compatible system S such that S = G.

5 Conclusion and Related Work

This paper investigated the sound and complete characterisation of multiparty session
types into CFSMs and developed a decidable synthesis algorithm from basic CFSMs.
The main tool we used is a new extension to multiparty interactions of the duality
condition for binary session types, called multiparty compatibility. The basic condition
(coming from binary session types) and the multiparty compatibility property are a nec-
essary and sufficient condition to obtain safe global types. Our aim is to offer a duality
notion which would be applicable to extend other theoretical foundations such as the
Curry-Howard correspondence with linear logics [4,20] to multiparty communications.
Basic multiparty compatible CFSMs also define one of the few non-trivial decidable
subclass of CFSMs which satisfy deadlock-freedom. The methods proposed here are
palatable to a wide range of applications based on choreography protocol models and
more widely, finite state machines. Multiparty compatibility is applicable for extend-
ing the synthesis algorithm to build more expressive graph-based global types (general
global types [8]) which feature fork and join primitives [9].

Our previous work [[8] presented the first translation from global and local types into
CFSMs. It only analysed the properties of the automata resulting from such a transla-
tion. The complete characterisation of global types independently from the projected
local types was left open, as was synthesis. This present paper closes this open prob-
lem. There are a large number of paper that can be found in the literature about the
synthesis of CFSMs. See [16] for a summary of recent results. The main distinction
with CFSM synthesis is, apart from the formal setting (i.e. types), about the kind of the
target specifications to be generated (global types in our case). Not only our synthesis
is concerned about trace properties (languages) like the standard synthesis of CFSMs
(the problem of the closed synthesis of CFSMs is usually defined as the construction
from a regular language L of a machine satisfying certain conditions related to buffer
boundedness, deadlock-freedom and words swapping), but we also generate concrete
syntax or choreography descriptions as fypes of programs or software. Hence they are
directly applicable to programming languages and can be straightforwardly integrated
into the existing frameworks that are based on session types.



Multiparty Compatibility in Communicating Automata 185

Within the context of multiparty session types, [[13] first studied the reconstruction of
a global type from its projected local types up to asynchronous subtyping and [[14] re-
cently offers a typing system to synthesise global types from local types. Our synthesis
based on CFSMs is more general since CFSMs do not depend on the syntax. For exam-
ple, [T4,[15] cannot treat the synthesis for A’, B and C in Remark .l These works also
do not study the completeness (i.e. they build a global type from a set of projected lo-
cal types (up to subtyping), and do not investigate necessary and sufficient conditions to
build a well-formed global type). A difficulty of the completeness result is that it is gen-
erally unknown if the global type constructed by the synthesis can simulate executions
with arbitrary buffer bounds since the synthesis only directly looks at 1-bounded exe-
cutions. In this paper, we proved Lemmal4.T] and bridged this gap towards the complete
characterisation. Recent work by [[1LI5] focus on proving the semantic correspondence
between global and local descriptions (see [8] for more detailed comparison), but no
synthesis algorithm is studied.
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